*** Welcome to piglix ***

Etale


In algebraic geometry, an étale morphism (French: [eˈtal]) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology.

The word étale is a French adjective, which means "slack", as in "slack tide", or, figuratively, calm, immobile, something left to settle.

Let be a ring homomorphism. This makes an -algebra. Choose a monic polynomial in and a polynomial in such that the derivative of is a unit in . We say that is standard étale if and can be chosen so that is isomorphic as an -algebra to and is the canonical map.


...
Wikipedia

...