*** Welcome to piglix ***

Ericsson cycle


The Ericsson cycle is named after inventor John Ericsson, who designed and built many unique heat engines based on various thermodynamic cycles. He is credited with inventing two unique heat engine cycles and developing practical engines based on these cycles. His first cycle is now known as the closed Brayton cycle, while his second cycle is what is now called the Ericsson cycle.

The following is a list of the four processes that occur between the four stages of the ideal Ericsson cycle:

The ideal Otto and Diesel cycles are not totally reversible because they involve heat transfer through a finite temperature difference during the irreversible isochoric/isobaric heat-addition and isochoric heat-rejection processes. The aforementioned irreversibility renders the thermal efficiency of these cycles less than that of a Carnot engine operating within the same limits of temperature. Another cycle that features isothermal heat-addition and heat-rejection processes is the Ericsson cycle. The Ericsson cycle is an altered version of the Carnot cycle in which the two isentropic processes featured in the Carnot cycle are replaced by two constant-pressure regeneration processes.

The Ericsson cycle is often compared to the Stirling cycle, since the engine designs based on these respective cycles are both external combustion engines with regenerators. The Ericsson is perhaps most similar to the so-called "double-acting" type of Stirling engine, in which the displacer piston also acts as the power piston. Theoretically, both of these cycles have so called ideal efficiency, which is the highest allowed by the second law of thermodynamics. The most well known ideal cycle is the Carnot cycle, although a useful Carnot engine is not known to have been invented. The theoretical efficiencies for both, Ericsson and Stirling cycles acting in the same limits are equal to the Carnot Efficiency for same limits.

The first cycle Ericsson developed is now called the "Brayton cycle", commonly applied to the rotary jet engines for airplanes.


...
Wikipedia

...