A point is said to be equidistant from a set of objects if the distances between that point and each object in the set are equal.
In two-dimensional Euclidean geometry, the locus of points equidistant from two given (different) points is their perpendicular bisector. In three dimensions, the locus of points equidistant from two given points is a plane, and generalising further, in n-dimensional space the locus of points equidistant from two points in n-space is an (n−1)-space.
For a triangle the circumcentre is a point equidistant from each of the three vertices. Every non-degenerate triangle has such a point. This result can be generalised to cyclic polygons: the circumcentre is equidistant from each of the vertices. Likewise, the incentre of a triangle or any other tangential polygon is equidistant from the points of tangency of the polygon's sides with the circle. Every point on a perpendicular bisector of the side of a triangle or other polygon is equidistant from the two vertices at the ends of that side. Every point on the bisector of an angle of any polygon is equidistant from the two sides that emanate from that angle.
The center of a rectangle is equidistant from all four vertices, and it is equidistant from two opposite sides and also equidistant from the other two opposite sides. A point on the axis of symmetry of a kite is equidistant between two sides.
The center of a circle is equidistant from every point on the circle. Likewise the center of a sphere is equidistant from every point on the sphere.