*** Welcome to piglix ***

Energy–momentum tensor


The stress–energy tensor (sometimes stress–energy–momentum tensor or energy–momentum tensor) is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

The stress–energy tensor involves the use of superscripted variables (not exponents; see tensor index notation and Einstein summation notation). If Cartesian coordinates in SI units are used, then the components of the position four-vector are given by: x0 = t, x1 = x, x2 = y, and x3 = z, where t is time in seconds, and x, y, and z are distances in meters.

The stress–energy tensor is defined as the tensor Tαβ of order two that gives the flux of the αth component of the momentum vector across a surface with constant xβcoordinate. In the theory of relativity, this momentum vector is taken as the four-momentum. In general relativity, the stress–energy tensor is symmetric,


...
Wikipedia

...