In mathematics, especially in applications of linear algebra to physics, the Einstein notation or Einstein summation convention is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving notational brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in applications in physics that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916.
According to this convention, when an index variable appears twice in a single term and is not otherwise defined (see free and bound variables), it implies summation of that term over all the values of the index. So where the indices can range over the set {1, 2, 3},
is simplified by the convention to:
The upper indices are not exponents but are indices of coordinates, coefficients or basis vectors. That is, in this context x2 should be understood as the second component of x rather than the square of x (this can occasionally lead to ambiguity). Typically (x1, x2, x3) would be equivalent to the traditional (x, y, z).
In general relativity, a common convention is that
In general, indices can range over any indexing set, including an infinite set. This should not be confused with a typographically similar convention used to distinguish between tensor index notation and the closely related but distinct basis-independent abstract index notation.