*** Welcome to piglix ***

Energies per unit mass

Energy density
SI unit J/m3
In SI base units kg·m−1s−2
Derivations from
other quantities
U = E/V

Energy density is the amount of energy stored in a given system or region of space per unit volume. Colloquially it may also be used for energy per unit mass, though the accurate term for this is specific energy. Often only the useful or extractable energy is measured, which is to say that chemically inaccessible energy such as rest mass energy is ignored. In cosmological and other general relativistic contexts, however, the energy densities considered are those that correspond to the elements of the stress–energy tensor and therefore do include mass energy as well as energy densities associated with the pressures described in the next paragraph.

Energy per unit volume has the same physical units as pressure, and in many circumstances is a synonym: for example, the energy density of a magnetic field may be expressed as (and behaves as) a physical pressure, and the energy required to compress a compressed gas a little more may be determined by multiplying the difference between the gas pressure and the external pressure by the change in volume. In short, pressure is a measure of the enthalpy per unit volume of a system. A pressure gradient has a potential to perform work on the surroundings by converting enthalpy until equilibrium is reached.

There are many different types of energy stored in materials, and it takes a particular type of reaction to release each type of energy. In order of the typical magnitude of the energy released, these types of reactions are: nuclear, chemical, electrochemical, and electrical.

Chemical reactions are used by animals to derive energy from food, and by automobiles to derive energy from gasoline. Electrochemical reactions are used by most mobile devices such as laptop computers and mobile phones to release the energy from batteries.

The following is a list of the thermal energy densities of commonly used or well-known energy storage materials; it doesn't include uncommon or experimental materials. Note that this list does not consider the mass of reactants commonly available such as the oxygen required for combustion or the energy efficiency in use.

The following unit conversions may be helpful when considering the data in the table: 1 MJ ≈ 0.28 kWh ≈ 0.37 HPh.


...
Wikipedia

...