*** Welcome to piglix ***

Elysium quadrangle

Elysium quadrangle
USGS-Mars-MC-15-ElysiumRegion-mola.png
Map of Elysium quadrangle from Mars Orbiter Laser Altimeter (MOLA) data. The highest elevations are red and the lowest are blue.
Coordinates 15°00′N 202°30′W / 15°N 202.5°W / 15; -202.5Coordinates: 15°00′N 202°30′W / 15°N 202.5°W / 15; -202.5

The Elysium quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Elysium quadrangle is also referred to as MC-15 (Mars Chart-15).

The name Elysium refers to a place of reward (Heaven), according to Homer in the Odyssey.

The Elysium quadrangle covers the area 180° to 225° west longitude and 0° to 30° north latitude on Mars. Elysium Planitia is in the Elysium quadrangle. The Elysium quadrangle includes a part of Lucus Planum. A small part of the Medusae Fossae Formation lies in this quadrangle. The largest craters in this quadrangle are Eddie, Lockyer, and Tombaugh. Elysium contains major volcanoes named Elysium Mons and Albor Tholus and river valleys—one of which, Athabasca Valles may be one of the youngest on Mars. On the east side is an elongated depression called Orcus Patera. A large lake may once have existed in the south near Lethe Valles and Athabasca Valles.

The Elysium quadrangle contains the volcanoes Elysium Mons and Albor Tholus.

David Susko and his colleagues at Louisiana State University analyzed geochemical and surface morphology data from Elysium using instruments on board NASA's Mars Odyssey Orbiter (2001) and Mars Reconnaissance Orbiter (2006). Through crater counting, they found differences in age between the northwest and the southeast regions of Elysium -- about 850 million years of difference. They also found that the younger southeast regions are geochemically different from the older regions, and that these differences related to igneous processes, not secondary processes like the interaction of water or ice with the surface of Elysium in the past. "We determined that while there might have been water in this area in the past, the geochemical properties in the top meter throughout this volcanic province are indicative of igneous processes," Susko said. "We think levels of thorium and potassium here were depleted over time because of volcanic eruptions over billions of years. The radioactive elements were the first to go in the early eruptions. We are seeing changes in the mantle chemistry over time." "Long-lived volcanic systems with changing magma compositions are common on Earth, but an emerging story on Mars," said James Wray, study co-author and associate professor in the School of Earth and Atmospheric Sciences at Georgia Tech. Overall, these findings indicate that Mars is a much more geologically complex body than originally thought, perhaps due to various loading effects on the mantle caused by the weight of giant volcanoes. For decades, we saw Mars, as a lifeless rock, full of craters with a number of long inactive volcanoes. We had a very simple view of the red planet. Finding a variety of igneous rocks demonstrates that Mars has the potential for useful resource utilization and a capacity to sustain a human population on Mars. "It's much easier to survive on a complex planetary body bearing the mineral products of complex geology than on a simpler body like the moon or asteroids."


...
Wikipedia

...