Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC requires smaller keys compared to non-ECC cryptography (based on plain Galois fields) to provide equivalent security.
Elliptic curves are applicable for encryption, digital signatures, pseudo-random generators and other tasks. They are also used in several integer factorization algorithms based on elliptic curves that have applications in cryptography, such as Lenstra elliptic curve factorization.
Public-key cryptography is based on the intractability of certain mathematical problems. Early public-key systems are secure assuming that it is difficult to factor a large integer composed of two or more large prime factors. For elliptic-curve-based protocols, it is assumed that finding the discrete logarithm of a random elliptic curve element with respect to a publicly known base point is infeasible: this is the "elliptic curve discrete logarithm problem" (ECDLP). The security of elliptic curve cryptography depends on the ability to compute a point multiplication and the inability to compute the multiplicand given the original and product points. The size of the elliptic curve determines the difficulty of the problem.
The primary benefit promised by elliptic curve cryptography is a smaller key size, reducing storage and transmission requirements, i.e. that an elliptic curve group could provide the same level of security afforded by an RSA-based system with a large modulus and correspondingly larger key: for example, a 256-bit elliptic curve public key should provide comparable security to a 3072-bit RSA public key.