*** Welcome to piglix ***

Elliptic cohomology


In mathematics, elliptic cohomology is a cohomology theory in the sense of algebraic topology. It is related to elliptic curves and modular forms.

Historically, elliptic cohomology arose from the study of elliptic genera. It was known by Atiyah and Hirzebruch that if acts smoothly and non-trivially on a spin manifold, then the index of the Dirac operator vanishes. In 1983, Witten conjectured that in this situation the equivariant index of a certain twisted Dirac operator is at least constant. This led to certain other problems concerning -actions on manifolds, which could be solved by Ochanine by the introduction of elliptic genera. In turn, Witten related these to (conjectural) index theory on free loop spaces. Elliptic cohomology, invented in its original form by Landweber, Stong and Ravenel in the late 1980s, was introduced to clarify certain issues with elliptic genera and provide a context for (conjectural) index theory of families of differential operators on free loop spaces. In some sense it can be seen as an approximation to the K-theory of the free loop space.


...
Wikipedia

...