General properties | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation |
/ˌmɛndəˈliːviəm/ |
||||||||||||||||||||||||||||||
Mass number | 258 (most stable isotope) | ||||||||||||||||||||||||||||||
Mendelevium in the periodic table | |||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
Atomic number (Z) | 101 | ||||||||||||||||||||||||||||||
Group | group n/a | ||||||||||||||||||||||||||||||
Period | period 7 | ||||||||||||||||||||||||||||||
Element category | actinide | ||||||||||||||||||||||||||||||
Block | f-block | ||||||||||||||||||||||||||||||
Electron configuration | [Rn] 5f13 7s2 | ||||||||||||||||||||||||||||||
Electrons per shell
|
2, 8, 18, 32, 31, 8, 2 | ||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||
Phase at STP | solid (predicted) | ||||||||||||||||||||||||||||||
Melting point | 1100 K (827 °C, 1521 °F) (predicted) | ||||||||||||||||||||||||||||||
Density (near r.t.) | 10.3(7) g/cm3(predicted) | ||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||
Oxidation states | 2, 3 | ||||||||||||||||||||||||||||||
Electronegativity | Pauling scale: 1.3 | ||||||||||||||||||||||||||||||
Ionization energies |
|
||||||||||||||||||||||||||||||
Miscellanea | |||||||||||||||||||||||||||||||
Crystal structure | face-centered cubic (fcc)
(predicted) |
||||||||||||||||||||||||||||||
CAS Number | 7440-11-1 | ||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||
Naming | after Dmitri Mendeleev | ||||||||||||||||||||||||||||||
Discovery | Lawrence Berkeley National Laboratory (1955) | ||||||||||||||||||||||||||||||
Main isotopes of mendelevium | |||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||
Reenactment of the discovery of mendelevium at Berkeley |
Mendelevium is a synthetic element with chemical symbol Md (formerly Mv) and atomic number 101. A metallic radioactive transuranic element in the actinide series, it is the first element that currently cannot be produced in macroscopic quantities through neutron bombardment of lighter elements. It is the third-to-last actinide and the ninth transuranic element. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. A total of sixteen mendelevium isotopes are known, the most stable being 258Md with a half-life of 51 days; nevertheless, the shorter-lived 256Md (half-life 1.17 hours) is most commonly used in chemistry because it can be produced on a larger scale.
Mendelevium was discovered by bombarding einsteinium with alpha particles in 1955, the same method still used to produce it today. It was named after Dmitri Mendeleev, father of the periodic table of the chemical elements. Using available microgram quantities of the isotope einsteinium-253, over a million mendelevium atoms may be produced each hour. The chemistry of mendelevium is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. Owing to the small amounts of produced mendelevium and all of its isotopes having relatively short half-lives, there are currently no uses for it outside basic scientific research.
Mendelevium was the ninth transuranic element to be synthesized. It was first synthesized by Albert Ghiorso, Glenn T. Seaborg, Gregory Robert Choppin, Bernard G. Harvey, and team leader Stanley G. Thompson in early 1955 at the University of California, Berkeley. The team produced 256Md (half-life of 77 minutes) when they bombarded an 253Es target consisting of only a billion (109) einsteinium atoms with alpha particles (helium nuclei) in the Berkeley Radiation Laboratory's 60-inch cyclotron, thus increasing the target's atomic number by two. 256Md thus became the first isotope of any element to be synthesized one atom at a time. In total, seventeen mendelevium atoms were produced. This discovery was part of a program, begun in 1952, that irradiated plutonium with neutrons to transmute it into heavier actinides. This method was necessary as the previous method used to synthesize transuranic elements, neutron capture, could not work because of a lack of known beta decaying isotopes of fermium that would produce isotopes of the next element, mendelevium, and also due to the very short half-life to spontaneous fission of 258Fm that thus constituted a hard limit to the success of the neutron capture process.