Albert Ghiorso | |
---|---|
Albert Ghiorso around 1970
|
|
Born | July 15, 1915 Vallejo, California, U.S. |
Died | December 26, 2010 Berkeley, California, U.S. |
(aged 95)
Nationality | American |
Fields | Nuclear science |
Institutions | Lawrence Berkeley National Laboratory |
Known for | Chemical element discoveries |
Notable awards | 2004 Lifetime Achievement Award (Radiochemistry Society), The Potts Medal (Franklin Institute), G. D. Searle and Co. Award (American Chemical Society), Honorary Doctorate (Gustavus Adolphus College), Fellow (American Academy of Arts and Sciences), Fellow (American Physical Society), Guinness Book of World Records (Most Elements Discovered) |
Albert Ghiorso (July 15, 1915 – December 26, 2010) was an American nuclear scientist and co-discoverer of a record 12 chemical elements on the periodic table. His research career spanned five decades, from the early 1940s to the late 1990s.
Ghiorso was born in California on July 15, 1915, of Italian and Spanish ancestry. He grew up in Alameda, California. As a teenager, he built radio circuitry and earned a reputation for establishing radio contacts at distances that outdid the military.
He received his BS in electrical engineering from the University of California, Berkeley in 1937. After graduation, he worked for Reginald Tibbets, a prominent amateur radio operator who operated a business supplying radiation detectors to the government. Ghiorso's ability to develop and produce these instruments, as well as a variety of electronic tasks, brought him into contact with the nuclear scientists at the University of California Radiation Laboratory at Berkeley, in particular Glenn Seaborg. During a job in which he was to install an intercom at the lab, he met two secretaries, one of whom married Seaborg and the other, Wilma Belt, who became Albert's wife of 60+ years.
In the early 1940s, Seaborg moved to Chicago to work on the Manhattan Project. He invited Ghiorso to join him, and for the next four years Ghiorso developed sensitive instruments for detecting the radiation associated with nuclear decay, including spontaneous fission. One of Ghiorso's breakthrough instruments was a 48-channel pulse height analyzer, which enabled him to identify the energy, and therefore the source, of the radiation. During this time they discovered two new elements (95, americium and 96, curium), although publication was withheld until after the war.
After the war, Seaborg and Ghiorso returned to Berkeley, where they and colleagues used the 60" Crocker cyclotron to produce elements of increasing atomic number by bombarding exotic targets with helium ions. In experiments during 1949-1950, they produced and identified elements 97 (berkelium) and 98 (californium). In 1953, in a collaboration with Argonne Lab, Ghiorso and collaborators sought and found elements 99 (einsteinium) and 100 (fermium), identified by their characteristic radiation in dust collected by airplanes from the first thermonuclear explosion (the Mike test). In 1955, the group used the cyclotron to produce 17 atoms of element 101 (mendelevium), the first new element to be discovered atom-by-atom. The recoil technique invented by Ghiorso was crucial to obtaining an identifiable signal from individual atoms of the new element.