*** Welcome to piglix ***

Electronic transition


Molecular electronic transitions take place when electrons in a molecule are excited from one energy level to a higher energy level. The energy change associated with this transition provides information on the structure of a molecule and determines many molecular properties such as color. The relationship between the energy involved in the electronic transition and the frequency of radiation is given by Planck's relation.

The electronic transitions in organic compounds and some other compounds can be determined by ultraviolet-visible spectroscopy, provided that transitions in the ultraviolet (UV) or visible range of the electromagnetic spectrum exist for this compound. Electrons occupying a HOMO of a sigma bond can get excited to the LUMO of that bond. This process is denoted as a σσ* transition. Likewise promotion of an electron from a π-bonding orbital to an antibonding π orbital* is denoted as a ππ* transition. Auxochromes with free electron pairs denoted as n have their own transitions, as do aromatic pi bond transitions. Sections of molecules which can undergo such detectable electron transitions can be referred to as chromophores since such transitions absorb electromagnetic radiation (light), which may be hypothetically perceived as color somewhere in the electromagnetic spectrum. The following molecular electronic transitions exist:


...
Wikipedia

...