*** Welcome to piglix ***

Electrochemical engineering


Electrochemical engineering is the branch of chemical engineering dealing with the technological applications of electrochemical phenomena, such as electrosynthesis of chemicals, electrowinning and refining of metals, flow batteries and fuel cells, surface modification by electrodeposition, electrochemical separations and corrosion. This discipline is an overlap between electrochemistry and chemical engineering.

According with the IUPAC, the term electrochemical engineering is reserved for electricity intensive processes for industrial or energy storage applications, and should not be confused with applied electrochemistry, which comprises small batteries, amperometric sensors, microfluidic devices, microelectrodes, solid-state devices, voltammetry at disc electrodes, etc.

More than 6% of the electricity is consumed by large-scale electrochemical operations in the USA.

Electrochemical engineering combines the study of heterogeneous charge transfer at electrode/electrolyte interphases with the development of practical materials and processes. Fundamental considerations include electrode materials and the kinetics of redox species. The development of the technology involves the study of the electrochemical reactors, their potential and current distribution, mass transport conditions, hydrodynamics, geometry and components as well as the quantification of its overall performance in terms of reaction yield, conversion efficiency, and energy efficiency. Industrial developments require further reactor and process design, fabrication methods, testing and product development.

Electrochemical engineering considers current distribution, fluid flow, mass transfer, and the kinetics of the electro reactions in order to design efficient electrochemical reactors.

Most electrochemical operations are performed in filter-press reactors with parallel plate electrodes or, less often, in stirred tanks with rotating cylinder electrodes. Fuel cell and flow battery stacks are types of filter-press reactors. Most of them are continuous operations.

This branch of engineering emerged gradually from chemical engineering as electrical power sources became available in the mid 19th century. Michael Faraday described his laws of electrolysis in 1833, relating for the first time the amount of electrical charge and converted mass. In 1886 Charles Martin Hall developed a cheap electrochemical process for the extraction of aluminium from its ore in molten salts, constituting the first true large-scale electrochemical industry. Later, Hamilton Castner improved the process aluminium manufacturing and devised the electrolysis of brine in large mercury cells for the production of chlorine and caustic soda, effectively founding the chlor-alkali industry with Karl Kellner in 1892. Charles Frederick Burgess developed the electrolytic refining of iron ca. 1904 and later run a successful battery company. Burgess published one of the first texts on the field in 1920. During the first three decades of the 20th century, industrial electrochemistry followed an empirical approach.


...
Wikipedia

...