Electrowinning, also called electroextraction, is the electrodeposition of metals from their ores that have been put in solution via a process commonly referred to as leaching. Electrorefining uses a similar process to remove impurities from a metal. Both processes use electroplating on a large scale and are important techniques for the economical and straightforward purification of non-ferrous metals. The resulting metals are said to be electrowon.
In electrowinning, a current is passed from an inert anode through a liquid leach solution containing the metal so that the metal is extracted as it is deposited in an electroplating process onto the cathode. In electrorefining, the anodes consist of unrefined impure metal, and as the current passes through the acidic electrolyte the anodes are corroded into the solution so that the electroplating process deposits refined pure metal onto the cathodes.
Electrowinning is the oldest industrial electrolytic process. The English chemist Humphry Davy obtained sodium metal in elemental form for the first time in 1807 by the electrolysis of molten sodium hydroxide.
Electrorefining of copper was first demonstrated experimentally by Maximilian, Duke of Leuchtenberg in 1883
James Elkington patented the commercial process in 1865 and opened the first successful plant in Pembrey, Wales in 1870. The first commercial plant in the United States was the Balbach and Sons Refining and Smelting Company in Newark, New Jersey in 1883.
The most common electrowon metals are lead, copper, gold, silver, zinc, aluminium, chromium, cobalt, manganese, and the rare-earth and alkali metals. For aluminium, this is the only production process employed. Several industrially important active metals (which react strongly with water) are produced commercially by electrolysis of their pyrochemical molten salts. Experiments using electrorefining to process spent nuclear fuel have been carried out. Electrorefining may be able to separate heavy metals such as plutonium, caesium, and strontium from the less-toxic bulk of uranium. Many electroextraction systems are also available to remove toxic (and sometimes valuable) metals from industrial waste streams.