A glow discharge is a plasma formed by the passage of electric current through a low-pressure gas. It is created by applying a voltage between two metal electrodes in a glass tube containing gas. When the voltage exceeds a certain value called the striking voltage, the gas in the tube ionizes, becoming a plasma, and begins conducting electricity, causing it to glow with a colored light. The color depends on the gas used. Glow discharge is widely used as a source of light in devices such as neon lights, fluorescent lamps, and plasma-screen televisions. Analyzing the light produced by spectroscopy can reveal much about the atomic interactions in the gas, so glow discharge is used in plasma physics and analytical chemistry. It is also used in the surface treatment technique called sputtering.
The simplest type of glow discharge is a direct-current glow discharge. In its simplest form, it consists of two electrodes in a cell held at low pressure (0.1–10 torr; about 1/10000th to 1/100th of atmospheric pressure). The cell is typically filled with neon, but other gases can also be used. An electric potential of several hundred volts is applied between the two electrodes. A small fraction of the population of atoms within the cell is initially ionized through random processes (thermal collisions between atoms or with gamma rays, for example). The ions (which are positively charged) are driven towards the cathode by the electric potential, and the electrons are driven towards the anode by the same potential. The initial population of ions and electrons collides with other atoms, ionizing them. As long as the potential is maintained, a population of ions and electrons remains.