*** Welcome to piglix ***

Direct-current


Direct current (DC) is the unidirectional flow of electric charge. A battery is a good example of a DC power supply. Direct current may flow in a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current.

The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage.

Direct current may be obtained from an alternating current supply by use of a rectifier, which contains electronic elements (usually) or electromechanical elements (historically) that allow current to flow only in one direction. Direct current may be converted into alternating current with an inverter or a motor-generator set.

Direct current is used to charge batteries and as power supply for electronic systems. Very large quantities of direct-current power are used in production of aluminum and other electrochemical processes. It is also used for some railways, especially in urban areas. High-voltage direct current is used to transmit large amounts of power from remote generation sites or to interconnect alternating current power grids.

Direct current was produced in 1800 in Italian Physicist Alessandro Volta's battery, his Voltaic pile. The nature of how the current flowed was not well understood until French physicist André-Marie Ampère discovered the current traveled in one direction from positive to negative. When French instrument maker Hippolyte Pixii built the first dynamo electric generator in 1832, he found that as the magnet used passed the loops of wire each half turn, it caused the flow of electricity to reverse, generating an alternating current. At Ampère's suggestion, Pixii later added a commutator, a type of "switch" where contacts on the shaft work with "brush" contacts to produce direct current.


...
Wikipedia

...