Electric eel | |
---|---|
Electric eel (Electrophorus electricus) at the New England Aquarium. | |
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Actinopterygii |
Order: | Gymnotiformes |
Family: | Electrophoridae |
Genus: |
Electrophorus T. N. Gill, 1864 |
Species: | E. electricus |
Binomial name | |
Electrophorus electricus (Linnaeus, 1766) |
The electric eel (Electrophorus electricus) is an electric fish, and the only species in that genus. Despite the name, it is not an eel, but rather a knifefish.
The electric eel has an elongated, cylindrical body, typically growing to about 2 m (6 ft 7 in) in length, and 20 kg (44 lb) in weight, making them the largest species of the Gymnotiformes. Their coloration is dark gray-brown on the back and yellow or orange on the belly. Mature males have a darker color on the belly. They have no scales. The mouth is square, and positioned at the end of the snout. The anal fin extends the length of the body to the tip of the tail.
As in other ostariophysan fishes, the swim bladder has two chambers. The anterior chamber is connected to the inner ear by a series of small bones derived from neck vertebrae called the Weberian apparatus, which greatly enhances its hearing capability. The posterior chamber extends along the whole length of the body and maintains the fish's buoyancy. E. electricus has a well-developed sense of hearing. This fish has a vascularized respiratory organ in its oral cavity. As obligate air-breathers, electric eels must rise to the surface every ten minutes or so to inhale before returning to the bottom. Nearly eighty percent of the oxygen used by the fish is obtained in this way.
Despite its name, the electric eel is not closely related to the true eels (Anguilliformes), but is a member of the neotropical knifefish order (Gymnotiformes), which is more closely related to the catfish.
The electric eel has three pairs of abdominal organs that produce electricity: the main organ, the Hunter's organ, and the Sach's organ. These organs make up four-fifths of its body, and give the electric eel the ability to generate two types of electric organ discharges: low voltage and high voltage. These organs are made of electrocytes, lined up so a current of ions can flow through them and stacked so each one adds to a potential difference.