*** Welcome to piglix ***

Eif4a

eukaryotic translation initiation factor 4A, isoform 1
Identifiers
Symbol EIF4A1
Alt. symbols EIF4A
Entrez 1973
HUGO 3282
OMIM 602641
RefSeq NM_001416
UniProt P60842
Other data
Locus Chr. 17 p13
eukaryotic translation initiation factor 4A, isoform 2
Identifiers
Symbol EIF4A2
Alt. symbols EIF4F
Entrez 1974
HUGO 3284
OMIM 601102
RefSeq NM_001967
UniProt Q14240
Other data
EC number 3.6.1.1
Locus Chr. 3 q28
eukaryotic translation initiation factor 4A, isoform 3
Identifiers
Symbol EIF4A3
Alt. symbols DDX48
Entrez 9775
HUGO 18683
OMIM 608546
RefSeq NM_014740
UniProt P38919
Other data
Locus Chr. 17 q25.3

The eukaryotic initiation factor-4A (eIF4A) family consists of 3 closely related proteins EIF4A1, EIF4A2, and EIF4A3. These factors are required for the binding of mRNA to 40S ribosomal subunits. In addition these proteins are helicases that function to unwind double-stranded RNA.

The mechanisms governing the basic subsistence of eukaryotic cells are immensely complex; it is therefore unsurprising that regulation occurs at a number of stages of protein synthesis – the regulation of translation has become a well-studied field. Human translational control is of increasing research interest as it has connotations in a range of diseases. Orthologs of many of the factors involved in human translation are shared by a range of eukaryotic organisms; some of which are used as model systems for the investigation of translation initiation and elongation, for example: sea urchin eggs upon fertilization, rodent brain and rabbit reticulocytes. Monod and Jacob were among the first to propose that "the synthesis of individual proteins may be provoked or suppressed within a cell, under the influence of specific external agents, and the relative rates at which different proteins may be profoundly altered, depending upon external conditions". Almost half a century after the flurry of postulations arising from the revelation of the central dogma of molecular biology, of which the preceding supposition by Monod and Jacob is an example; contemporary researchers still have much to learn about the modulation of genetic expression. Synthesis of protein from mature messenger RNA in eukaryotes is divided into translation initiation, elongation, and termination of these stages; the initiation of translation is the rate limiting step. Within the process of translation initiation; the bottleneck occurs shortly before the ribosome binds to the 5’ m7GTP facilitated by a number of proteins; it is at this stage that constrictions born of stress, amino acid starvation etc. take effect.


...
Wikipedia

...