Ehrenfest equations (named after Paul Ehrenfest) are equations which describe changes in specific heat capacity and derivatives of specific volume in second-order phase transitions. The Clausius–Clapeyron relation does not make sense for second-order phase transitions, as both specific entropy and specific volume do not change in second-order phase transitions.
Ehrenfest equations are the consequence of continuity of specific entropy and specific volume , which are first derivatives of specific Gibbs free energy – in second-order phase transitions. If one considers specific entropy as a function of temperature and pressure, then its differential is: . As , then the differential of specific entropy also is: