Earthquake forecasting is a branch of the science of seismology concerned with the probabilistic assessment of general earthquake hazard, including the frequency and magnitude of damaging earthquakes in a given area over years or decades. While forecasting is usually considered to be a type of prediction, earthquake forecasting is often differentiated from earthquake prediction, whose goal is the specification of the time, location, and magnitude of future earthquakes with sufficient precision that a warning can be issued. Both forecasting and prediction of earthquakes are distinguished from earthquake warning systems, which upon detection of an earthquake, provide a real-time warning to regions that might be affected.
In the 1970s, scientists were optimistic that a practical method for predicting earthquakes would soon be found, but by the 1990s continuing failure led many to question whether it was even possible. Demonstrably successful predictions of large earthquakes have not occurred and the few claims of success are controversial. Consequently, many scientific and government resources have been used for probabilistic seismic hazard estimates rather than prediction of individual earthquakes. Such estimates are used to establish building codes, insurance rate structures, awareness and preparedness programs, and public policy related to seismic events. In addition to regional earthquake forecasts, such seismic hazard calculations can take factors such as local geological conditions into account. Anticipated ground motion can then be used to guide building design criteria.
Methods for earthquake forecasting generally look for trends or patterns that lead to an earthquake. As these trends may be complex and involve many variables, advanced statistical techniques are often needed to understand them, therefore these are sometimes called statistical methods. These approaches tend to have relatively long time periods, making them useful for earthquake forecasting.
Even the stiffest of rock is not perfectly rigid. Given a large force (such as between two immense tectonic plates moving past each other) the earth's crust will bend or deform. According to the elastic rebound theory of Reid (1910), eventually the deformation (strain) becomes great enough that something breaks, usually at an existing fault. Slippage along the break (an earthquake) allows the rock on each side to rebound to a less deformed state. In the process energy is released in various forms, including seismic waves. The cycle of tectonic force being accumulated in elastic deformation and released in a sudden rebound is then repeated. As the displacement from a single earthquake ranges from less than a meter to around 10 meters (for an M 8 quake), the demonstrated existence of large strike-slip displacements of hundreds of miles shows the existence of a long running earthquake cycle.