*** Welcome to piglix ***

Dyneins

Dynein heavy chain, N-terminal region 1
Identifiers
Symbol DHC_N1
Pfam PF08385
InterPro IPR013594
Dynein heavy chain, N-terminal region 2
Identifiers
Symbol DHC_N2
Pfam PF08393
InterPro IPR013602
Dynein heavy chain and region D6 of dynein motor
Identifiers
Symbol Dynein_heavy
Pfam PF03028
InterPro IPR004273
Dynein light intermediate chain (DLIC)
Identifiers
Symbol DLIC
Pfam PF05783
Pfam clan CL0023
Dynein light chain type 1
PDB 1cmi EBI.jpg
structure of the human pin/lc8 dimer with a bound peptide
Identifiers
Symbol Dynein_light
Pfam PF01221
InterPro IPR001372
PROSITE PDOC00953
SCOP 1bkq
SUPERFAMILY 1bkq

Dynein is a family of cytoskeletal motor proteins that move along microtubules in cells. They convert the chemical energy stored in ATP to mechanical work. Dynein transports various cellular cargos, provides forces and displacements important in mitosis, and drives the beat of eukaryotic cilia and flagella. All of these functions rely on dynein's ability to move towards the minus-end of the microtubules, known as retrograde transport, thus, they are called "minus-end directed motors." In contrast, kinesin motor proteins move toward the microtubules' plus end.

Dyneins can be divided into two groups: cytoplasmic dyneins and axonemal dyneins, which are also called ciliary or flagellar dyneins.

Axonemal dynein causes sliding of microtubules in the axonemes of cilia and flagella and is found only in cells that have those structures.

Cytoplasmic dynein, found in all animal cells and possibly plant cells as well, performs functions necessary for cell survival such as organelle transport and centrosome assembly. Cytoplasmic dynein moves processively along the microtubule; that is, one or the other of its stalks is always attached to the microtubule so that the dynein can "walk" a considerable distance along a microtubule without detaching.

Cytoplasmic dynein helps to position the Golgi complex and other organelles in the cell. It also helps transport cargo needed for cell function such as vesicles made by the endoplasmic reticulum, endosomes, and lysosomes (Karp, 2005). Dynein is involved in the movement of chromosomes and positioning the mitotic spindles for cell division. Dynein carries organelles, vesicles and possibly microtubule fragments along the axons of neurons toward the cell body in a process called retrograde axoplasmic transport.


...
Wikipedia

...