Double acting ship is a type of icebreaking ship designed to run ahead in open water and thin ice, but turn around and proceed astern (backwards) in heavy ice conditions. In this way, the ship can operate independently in severe ice conditions without icebreaker assistance but retain better open water performance than traditional icebreaking vessels.
Double acting ships carrying liquid cargo are generally referred as double acting tankers. In the early 1990s Kværner Masa-Yards Arctic Technology Centre (MARC) developed the concept for oil transportation between the Russian Arctic and Europe and the first double acting tanker, Finnish crude oil tanker Tempera, was delivered in 2002. The double acting ship concept was patented by MARC and today the abbreviation "DAS" is a registered trademark of Aker Arctic Technology Inc.
In the early 1990s, studies conducted by Kvaerner Masa-Yards showed that the ship's open water efficiency is as important factor as its ability to operate in difficult ice conditions in oil transportation from the Russian Arctic to Europe. This was due to the fact that on a direct route 90% of the time would be spent in open water. Direct independent transportation with a vessel capable of navigating in both ice and open water was also found out to be a more economical alternative in comparison with transshipment, i.e. the use of different vessels for different parts of the journey, or normal ships relying on icebreaker assistance.
Although icebreaking cargo ships had been built in the past, their hull forms were always compromises between open water performance and icebreaking capability. A good icebreaking bow, designed to break the ice by bending it under the ship's weight, has very poor open water characteristics and is subjected to slamming in heavy weather. However, a hydrodynamically efficient bulbous bow greatly increases the ice resistance, making it unsuitable for icebreakers. As a result, the total efficiency of icebreaking ships is 20–40% less than that of good open water vessels of similar size mainly due to the bow form.
In the late 1800s, captains operating ships in icebound waters discovered that sometimes it was easier to break through ice by running their vessels astern. Although not known at the time, this was because the forward-facing propellers generated a lubricating water flow that lowered the ice resistance by reducing friction between the ship's hull and ice. However, as the steering ability of a ship is greatly reduced when running astern, it could not be considered a main operating mode. These findings resulted in the adoption of bow propellers in older icebreakers operating in the Great Lakes and the Baltic Sea, but in the more severe Arctic ice conditions they could not be used because the risk of the bow propellers being damaged by multi-year ice floes was too great. Furthermore, forward-facing propellers have a very low propulsion efficiency and they considerably increase the ship's open water resistance, making them unsuitable for merchant ships.