*** Welcome to piglix ***

Divisor class group


In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are ultimately derived from the notion of divisibility in the integers and algebraic number fields.

The background is that codimension-1 subvarieties are understood much better than higher-codimension subvarieties. This happens in both global and local ways. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-r subvariety need not be definable by only r equations when r is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this good property, much of algebraic geometry studies an arbitrary variety by analyzing its codimension-1 subvarieties and the corresponding line bundles.

On singular varieties, this good property can fail, and so one has to distinguish between codimension-1 subvarieties and varieties which can locally be defined by one equation. The former are Weil divisors while the latter are Cartier divisors. Topologically, Weil divisors play the role of homology classes, while Cartier divisors represent cohomology classes. On a smooth variety (or more generally a regular scheme), a result analogous to Poincare duality says that Weil and Cartier divisors are the same.


...
Wikipedia

...