*** Welcome to piglix ***

Dithiothreitol

Dithiothreitol
Skeletal formula of dithiothreitol
Ball-and-stick model of the dithiothreitol molecule
Names
Preferred IUPAC name
(2S,3S)-1,4-Bis(sulfanyl)butane-2,3-diol
Other names
(2S,3S)-1,4-Dimercaptobutane-2,3-diol (no longer recommended)
D-threo-1,4-Dimercaptobutane-2,3-diol
D-threo-1,4-Dimercapto-2,3-butanediol
1,4-Dithio-D-threitol
Cleland's reagent
Reductacryl
Identifiers
3483-12-3 YesY
3D model (Jmol) Interactive image
ChEBI CHEBI:42170 YesY
ChEMBL ChEMBL406270 N
ChemSpider 393541 YesY
DrugBank DB04447 YesY
ECHA InfoCard 100.020.427
PubChem 446094
UNII T8ID5YZU6Y YesY
Properties
C4H10O2S2
Molar mass 154.253 g/mol
Appearance White solid
Melting point 42 to 43 °C (108 to 109 °F; 315 to 316 K)
Boiling point 125 to 130 °C (257 to 266 °F; 398 to 403 K) at 2 mmHg
Soluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Dithiothreitol (DTT) is the common name for a small-molecule redox reagent also known as Cleland's reagent. DTT's formula is C4H10O2S2 and the chemical structure of one of its enantiomers in its reduced form is shown on the right; its oxidized form is a disulfide bonded 6-membered ring (shown below). The reagent is commonly used in its racemic form, as both enantiomers are reactive. Its name derives from the four-carbon sugar, threose. DTT has an epimeric ('sister') compound, dithioerythritol (DTE).

DTT is a reducing agent; once oxidized, it forms a stable six-membered ring with an internal disulfide bond. It has a redox potential of -0.33 V at pH 7. The reduction of a typical disulfide bond proceeds by two sequential thiol-disulfide exchange reactions and is illustrated below. The reduction usually does not stop at the mixed-disulfide species because the second thiol of DTT has a high propensity to close the ring, forming oxidized DTT and leaving behind a reduced disulfide bond. The reducing power of DTT is limited to pH values above 7, since only the negatively charged thiolate form -S is reactive (the protonated thiol form -SH is not); the pKa of the thiol groups is 9.2 and 10.1.

DTT is used as a reducing or "deprotecting" agent for thiolated DNA. The terminal sulfur atoms of thiolated DNA have a tendency to form dimers in solution, especially in the presence of oxygen. Dimerization greatly lowers the efficiency of subsequent coupling reactions such as DNA immobilization on gold in biosensors. Typically DTT is mixed with a DNA solution and allowed to react, and then is removed by filtration (for the solid catalyst) or by chromatography (for the liquid form). The DTT removal procedure is often called "desalting." Generally, DTT is used as a protecting agent that prevents oxidation of thiol groups.


...
Wikipedia

...