In mathematical physics, the Dirac algebra is the Clifford algebra Cℓ4(C), which may be thought of as Cℓ1,3(C). This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-½ particles with a matrix representation with the Dirac gamma matrices, which represent the generators of the algebra.
The gamma elements have the defining relation
where are the components of the Minkowski metric with signature (+ − − −) and is the identity element of the algebra (the identity matrix in the case of a matrix representation). This allows the definition of a scalar product