Names | |
---|---|
IUPAC name
Butane-2,3-dione dioxime
|
|
Other names
Dimethylglyoxime
Diacetyl dioxime Chugaev's Reagent |
|
Identifiers | |
95-45-4 | |
3D model (Jmol) | Interactive image |
ChemSpider | 10606175 |
ECHA InfoCard | 100.002.201 |
RTECS number | EK2975000 |
UNII | 2971MFT1KY |
|
|
|
|
Properties | |
C4H8N2O2 | |
Molar mass | 116.12 g·mol−1 |
Appearance | White/Off White Powder |
Density | 1.37 g/cm3 |
Melting point | 240 to 241 °C (464 to 466 °F; 513 to 514 K) |
Boiling point | decomposes |
low | |
Structure | |
0 | |
Hazards | |
Main hazards | Toxic, Skin/Eye Irritant |
Safety data sheet | External MSDS |
R-phrases | R20/22 |
S-phrases | R22, R36/37 |
NFPA 704 | |
Related compounds | |
Related compounds
|
Hydroxylamine salicylaldoxime |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
|
what is ?) | (|
Infobox references | |
Dimethylglyoxime is a chemical compound described by the formula CH3C(NOH)C(NOH)CH3. Its abbreviation is dmgH2 for neutral form, and dmgH for anionic form, where H stands for hydrogen. This colourless solid is the dioxime derivative of the diketone butane-2,3-dione (also known as diacetyl). DmgH2 is used in the analysis of palladium or nickel. Its coordination complexes are of theoretical interest as models for enzymes and as catalysts. Many related ligands can be prepared from other diketones, e.g. benzil.
Dimethylglyoxime can be prepared from butanone first by reaction with ethyl nitrite followed by sodium hydroxylamine monosulfonate:
Dimethylglyoxime is used as a chelating agent in the gravimetric analysis of nickel:
The use of DMG as a reagent to detect nickel was discovered by L. A. Chugaev in 1905. For qualitative analysis, dmgH2 is often used as a solution in ethanol. It is the conjugate base, not dmgH2 itself, that forms the complexes. Furthermore, a pair of dmgH− ligands are joined through hydrogen bonds to give a macrocyclic ligand. The most famous complex is the bright red Ni(dmgH)2, formed by treatment of Ni(II) sources with dmgH2. This planar complex is very poorly soluble and so precipitates from solution. This method is used for the gravimetric determination of nickel, e.g. in ores.
The nitrogen atoms in dmgH2 and its complexes are sp2 hybridized. Because of the planarity of the resulting ligand, the macrocycle [dmgH]22− resembles some biologically important macrocyclic ligands, as found for example in vitamin B12 and myoglobin. A well known family of model complexes, the cobaloximes, have the formula CoR(dmgH)2L, where R is an alkyl group and L is typically pyridine. In such complexes, L and R occupy “axial” positions on the cobalt, perpendicular to the plane of the (dmgH)2. One of the examples of cobaloxime is chloro(pyridine)cobaloxime.