*** Welcome to piglix ***

Dilution refrigerator


A 3He/4He dilution refrigerator is a cryogenic device that provides continuous cooling to temperatures as low as 2 mK, with no moving parts in the low-temperature region. The cooling power is provided by the heat of mixing of the Helium-3 and Helium-4 isotopes. It is the only continuous refrigeration method for reaching temperatures below 0.3 K.

The dilution refrigerator was first proposed by Heinz London in the early 1950s, and was experimentally realized in 1964 in the Kamerlingh Onnes Laboratorium at Leiden University.

The refrigeration process uses a mixture of two isotopes of helium: helium-3 and helium-4. When cooled below approximately 870 millikelvin, the mixture undergoes spontaneous phase separation to form a 3He-rich phase (the concentrated phase) and a 3He-poor phase (the dilute phase). As shown in the phase diagram, at very low temperatures the concentrated phase is essentially pure 3He, while the dilute phase contains about 6.6% 3He and 93.4% 4He. The working fluid is 3He, which is circulated by vacuum pumps at room temperature.

The 3He enters the cryostat at a pressure of a few hundred millibar. In the classic dilution refrigerator (known as a wet dilution refrigerator), the 3He is precooled and purified by liquid nitrogen at 77 K and a 4He bath at 4.2 K. Next, the 3He enters a vacuum chamber where it is further cooled to a temperature of 1.2–1.5 K by the 1 K bath, a vacuum-pumped 4He bath (as decreasing the pressure of the helium reservoir depresses its boiling point). The 1 K bath liquefies the 3He gas and removes the heat of condensation. The 3He then enters the main impedance, a capillary with a large flow resistance. It is cooled by the still (described below) to a temperature 500–700 mK. Subsequently, the 3He flows through a secondary impedance and one side of a set of counterflow heat exchangers where it is cooled by a cold flow of 3He. Finally, the pure 3He enters the mixing chamber, the coldest area of the device.


...
Wikipedia

...