Diffusion is the net movement of molecules or atoms from a region of high concentration (or high chemical potential) to a region of low concentration (or low chemical potential). This is also referred to as the movement of a substance down a concentration gradient.
A gradient is the change in the value of a quantity (e.g., concentration, pressure, temperature) with the change in another variable (usually distance). For example, a change in concentration over a distance is called a concentration gradient, a change in pressure over a distance is called a pressure gradient, and a change in temperature over a distance is a called a temperature gradient.
The word diffusion derives from the Latin word, diffundere, which means "to spread out" (a substance that “spreads out” is moving from an area of high concentration to an area of low concentration).
A distinguishing feature of diffusion is that it is dependent on particle random walk and results in mixing or mass transport, without requiring directed bulk motion. Bulk motion (bulk flow) is the characteristic of advection. The term convection is used to describe the combination of both transport phenomena.
An example of a situation in which bulk motion and diffusion can be differentiated is the mechanism by which oxygen enters the body during external respiration (breathing). The lungs are located in the thoracic cavity, which expands as the first step in external respiration. This expansion leads to an increase in volume of the alveoli in the lungs, which causes a decrease in pressure in the alveoli. This creates a pressure gradient between the air outside the body (relatively high pressure) and the alveoli (relatively low pressure). The air moves down the pressure gradient through the airways of the lungs and into the alveoli until the pressure of the air and that in the alveoli are equal (i.e., the movement of air by bulk flow stops once there is no longer a pressure gradient).