*** Welcome to piglix ***

Decompression diving


The decompression of a diver is the reduction in ambient pressure experienced during ascent from depth. It is also the process of elimination of dissolved inert gases from the diver's body, which occurs during the ascent, during pauses in the ascent known as decompression stops, and after surfacing until the gas concentrations reach equilibrium. Divers breathing gas at ambient pressure need to ascend at a rate determined by their exposure to pressure and the breathing gas in use. A diver who only breathes gas at atmospheric pressure when free-diving or snorkelling will not usually need to decompress, Divers using an atmospheric diving suit do not need to decompress as they are never exposed to high ambient pressure.

When a diver descends in the water the hydrostatic pressure, and therefore the ambient pressure, rises. Because breathing gas is supplied at ambient pressure, some of this gas dissolves into the diver's blood and is transferred by the blood to other tissues. Inert gas such as nitrogen or helium continues to be taken up until the gas dissolved in the diver is in a state of equilibrium with the breathing gas in the diver's lungs, at which point the diver is saturated for that depth and breathing mixture, or the depth, and therefore the pressure, is changed. During ascent, the ambient pressure is reduced, and at some stage the inert gases dissolved in any given tissue will be at a higher concentration than the equilibrium state and start to diffuse out again. If the pressure reduction is sufficient, excess gas may form bubbles, which may lead to decompression sickness, a possibly debilitating or life-threatening condition. It is essential that divers manage their decompression to avoid excessive bubble formation and decompression sickness. A mismanaged decompression usually results from reducing the ambient pressure too quickly for the amount of gas in solution to be eliminated safely. These bubbles may block arterial blood supply to tissues or directly cause tissue damage. If the decompression is effective, the asymptomatic venous microbubbles present after most dives are eliminated from the diver's body in the alveolar capillary beds of the lungs. If they are not given enough time, or more bubbles are created than can be eliminated safely, the bubbles grow in size and number causing the symptoms and injuries of decompression sickness. The immediate goal of controlled decompression is to avoid development of symptoms of bubble formation in the tissues of the diver, and the long-term goal is to avoid complications due to sub-clinical decompression injury.


...
Wikipedia

...