Darzens reaction | |
---|---|
Named after | Auguste George Darzens |
Reaction type | Ring forming reaction |
Identifiers | |
Organic Chemistry Portal | darzens-reaction |
RSC ontology ID | RXNO:0000077 |
The Darzens reaction (also known as the Darzens condensation or glycidic ester condensation) is the chemical reaction of a ketone or aldehyde with an α-haloester in the presence of base to form an α,β-epoxy ester, also called a "glycidic ester". This reaction was discovered by the organic chemist Auguste George Darzens in 1904.
The reaction process begins when a strong base is used to form a carbanion at the halogenated position. Because of the ester, this carbanion is a resonance-stabilized enolate, which makes it relatively easy to form. This nucleophilic structure attacks another carbonyl component, forming a new carbon–carbon bond. These first two steps are similar to a base-catalyzed aldol reaction. The oxygen anion in this aldol-like product then does an intramolecular SN2 attack on the formerly-nucleophilic halide-bearing position, displacing the halide to form an epoxide. This reaction sequence is thus a condensation reaction, since there is a net loss of HCl when the two reactant molecules join.
The primary role of the ester is to enable the initial deprotonation to occur, and other carbonyl functional groups can be used instead. If the starting material is an α-halo amide, the product is an α,β-epoxy amide. If an α-halo ketone is used, the product is an α,β-epoxy ketone.
Any sufficiently strong base can be used for the initial deprotonation. However, if the starting material is an ester, the alkoxide corresponding to the ester side-chain is commonly in order to prevent complications due to potential acyl exchange side reactions.