A condensation reaction is a chemical reaction in which two molecules or moieties, often functional groups, combine to form a larger molecule, together with the loss of a small molecule. Possible small molecules that are lost include water, acetic acid, hydrogen chloride, or methanol, but most commonly in biological reactions it is water. Condensations producing water as a byproduct are the opposite reaction of transformations involving hydrolysis, which split a reactant into two new species through addition of a water molecule.
Condensation can be intermolecular (between two different molecules) or intramolecular (involving different groups within the same molecule). A simple example of an intermolecular condensation is the joining of two amino acids in the peptide bond, as is characteristic of all proteins. Examples of intermolecular condensations often lead to ring formation, and include the synthesis of cyclic peptides via the same bond forming process as just described, as well as Dieckmann condensations, in which the two ester groups within a diester molecule react with release of an alcohol molecule to form a β-ketoester product.
The condensation reaction-speed can be catalyzed, by simply adding a concentrated acid to the reaction. It effects it by acidifying the environment whereas the reaction takes place the acid thereby binds with the water molecules and speed up the process.
Condensation reactions can follow a variety of different reaction mechanisms, depending on the groups reacting and the conditions employed to perform the reaction (solvent, temperature, reaction additives, etc.).