*** Welcome to piglix ***

DEAD box

DEAD/DEAH box helicase
PDB 1qva EBI.jpg
Structure of the amino terminal domain of yeast initiation factor 4A. PDB 1qva
Identifiers
Symbol DEAD
Pfam PF00270
Pfam clan CL0023
InterPro IPR011545
PROSITE PDOC00039
SCOP 1qva
SUPERFAMILY 1qva
CDD cd00268

DEAD box proteins are involved in an assortment of metabolic processes that typically involve RNAs, but in some cases also other nucleic acids. They are highly conserved in nine motifs and can be found in most prokaryotes and eukaryotes, but not all. Many organisms, including humans, contain DEAD-box helicases, which are involved in RNA metabolism.

DEAD box proteins were first brought to attention in the late 1980s in a study that looked at a group of NTP binding sites that were similar in sequence to the eIF4A RNA helicase sequence. The results of this study showed that these proteins (p68, SrmB, MSS116, vasa, PL10, mammalian eIF4A, yeast eIF4A) involved in RNA metabolism had several common elements. There were nine common sequences found to be conserved amongst the studied species, which is an important criterion of the DEAD box family. The nine conserved motifs are as follows, Q-motif, motif 1, motif 1a, motif 1b, motif II, motif III, motif IV, motif V, and motif VI, as shown in the figure. Motif II is also known as the Walker B motif and contains the amino acid sequence D-E-A-D (asp-glu-ala-asp), which gave this family of proteins the name “DEAD box”. Motif 1, motif II, the Q motif, and motif VI are all needed for ATP binding and hydrolysis, while motifs, 1a, 1b, III, IV, and V may be involved in intramolecular rearrangements and RNA interaction.

The DEAH and SKI families have had proteins that have been identified to be related to the DEAD box family. These two relatives have a few particularly unique motifs that are conserved within their own family. DEAD box, DEAH, and the SKI families are all referred to as DExD/H proteins. They are all quite distinct from one another and there is not one protein that belongs to more than one of these families. It is thought that each family has a specific role in RNA metabolism, for example both DEAD box and DEAH box proteins NTPase activities become stimulated by RNA, but DEAD box proteins use ATP and DEAH does not.

DEAD box proteins are considered to be RNA helicases and many have been found to be required in cellular processes such as pre-mRNA processing and rearranging of ribonucleoproteins (RNP) complexes.


...
Wikipedia

...