*** Welcome to piglix ***

D9-brane


In string theory, D-branes are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes were discovered by Dai, Leigh and Polchinski, and independently by Hořava in 1989. In 1995, Polchinski identified D-branes with black p-brane solutions of supergravity, a discovery that triggered the Second Superstring Revolution and led to both holographic and M-theory dualities.

D-branes are typically classified by their spatial dimension, which is indicated by a number written after the D. A D0-brane is a single point, a D1-brane is a line (sometimes called a "D-string"), a D2-brane is a plane, and a D25-brane fills the highest-dimensional space considered in bosonic string theory. There are also instantonic D(–1)-branes, which are localized in both space and time.

The equations of motion of string theory require that the endpoints of an open string (a string with endpoints) satisfy one of two types of boundary conditions: The Neumann boundary condition, corresponding to free endpoints moving through spacetime at the speed of light, or the Dirichlet boundary conditions, which pin the string endpoint. Each coordinate of the string must satisfy one or the other of these conditions. There can also exist strings with mixed boundary conditions, where the two endpoints satisfy NN, DD, ND and DN boundary conditions. If p spatial dimensions satisfy the Neumann boundary condition, then the string endpoint is confined to move within a p-dimensional hyperplane. This hyperplane provides one description of a Dp-brane.


...
Wikipedia

...