In music, a cyclic set is a set, "whose alternate elements unfold complementary cycles of a single interval." Those cycles are ascending and descending, being related by inversion since complementary:
In the above example, as explained, one interval (7) and its complement (-7 = +5), creates two series of pitches starting from the same note (8):
According to George Perle, "a Klumpenhouwer network is a chord analyzed in terms of its dyadic sums and differences," and, "this kind of analysis of triadic combinations was implicit in," his, "concept of the cyclic set from the beginning".
A cognate set is a set created from joining two sets related through inversion such that they share a single series of dyads.
The two cycles may also be aligned as pairs of sum 7 or sum 5 dyads. All together these pairs of cycles form a set complex, "any cyclic set of the set complex may be uniquely identified by its two adjacency sums," and as such the example above shows p0p7 and i5i0.