Cuprospinel | |
---|---|
General | |
Category |
Oxide mineral Spinel group |
Formula (repeating unit) |
CuFe2O4 or (Cu,Mg)Fe2O4 |
Strunz classification | 4.BB.05 |
Crystal system | Isometric |
Crystal class | Hexoctahedral (m3m) H-M symbol: (4/m 3 2/m) |
Space group | Cubic Space group: Fd3m |
Identification | |
Formula mass | 239.23 g/mol |
Color | Black, gray in reflected light |
Crystal habit | Irregular grains, laminae intergrown with hematite |
Mohs scale hardness | 6.5 |
Luster | Metallic |
Streak | Black |
Diaphaneity | Opaque |
Specific gravity | 5 - 5.2 |
Optical properties | Isotropic |
Refractive index | n = 1.8 |
References |
Cuprospinel, occurs naturally in Baie Verte, Newfoundland, Canada. The mineral was found in an exposed ore dump, on the property of Consolidated Rambler Mines Limited near Baie Verte, Newfoundland. The mineral was first characterized by Ernest Henry Nickel, a mineralogist with the Department of Energy, Mines and Resources in Australia, in 1973.
Cuprospinel, is an inverse spinel with the formula CuFe2O4, where copper substitutes some of the iron cations in the structure. Its structure is similar to that of magnetite, Fe3O4, yet with slightly different chemical and physical properties due to the presence of copper.
Cuprospinel, like many other spinels has the general formula AB2O4. Yet, cuprospinel is an inverse spinel in that its A element, in this case copper (Cu2+), only occupies octahedral sites in the structure and the B element, iron (Fe2+ and Fe3+), is split between the octahedral and tetrahedral sites in the structure. The Fe2+ species will occupy some of the octahedral sites and there will only be Fe3+ at the tetrahedral sites. Cuprospinel adopts both cubic and tetragonal phases at room temperature, yet as temperature is elevated the cubic form is most stable.
Cuprospinel is used in various industrial processes as a catalyst. An example is the water–gas shift reaction:
This reaction is particularly important for hydrogen production and enrichment.