In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.
There are three main varieties of these crystals:
Each is subdivided into other variants listed below. Note that although the unit cell in these crystals is conventionally taken to be a cube, the primitive unit cell often is not. This is related to the fact that in most cubic crystal systems, there is more than one atom per cubic unit cell.
A classic isometric crystal has square or pentagonal faces.
The three Bravais lattices in the cubic crystal system are:
The primitive cubic system (cP) consists of one lattice point on each corner of the cube. Each atom at a lattice point is then shared equally between eight adjacent cubes, and the unit cell therefore contains in total one atom ( 1⁄8 × 8).
The body-centered cubic system (cI) has one lattice point in the center of the unit cell in addition to the eight corner points. It has a net total of 2 lattice points per unit cell ( 1⁄8 × 8 + 1).
The face-centered cubic system (cF) has lattice points on the faces of the cube, that each gives exactly one half contribution, in addition to the corner lattice points, giving a total of 4 lattice points per unit cell ( 1⁄8 × 8 from the corners plus 1⁄2 × 6 from the faces). Each sphere in a cF lattice has coordination number 12.coordination number is the number of nearest neighbours .12 is the coordination number of face centre cubic lattice.The no of second nearest neighbours are 6.third nearest neighbours are 24.
The face-centered cubic system is closely related to the hexagonal close packed (HCP) system, and the two systems differ only in the relative placements of their hexagonal layers. The [111] plane of a face-centered cubic system is a hexagonal grid.