*** Welcome to piglix ***

Primitive cell


In geometry, crystallography, mineralogy, and solid state physics, a primitive cell is a minimum volume cell (a unit cell) corresponding to a single lattice point of a structure with discrete translational symmetry. The concept is used particularly in describing crystal structure in two and three dimensions, though it makes sense in all dimensions. A lattice can be characterized by the geometry of its primitive cell.

The primitive cell is a primitive unit. A primitive unit is a section of the tiling (usually a parallelogram or a set of neighboring tiles) that generates the whole tiling using only translations, and is as small as possible.

The primitive cell is a fundamental domain with respect to translational symmetry only. In the case of additional symmetries a fundamental domain is smaller.

The primitive translation vectors a1, a2, a3 span a lattice cell of smallest volume for a particular three-dimensional lattice, and are used to define a crystal translation vector

where u1, u2, u3 are integers, translation by which leaves the lattice invariant. That is, for a point in the lattice r, the arrangement of points appears the same from r′ = r + T as from r.

Since the primitive cell is defined by the primitive axes (vectors) a1, a2, a3, the volume Vp of the primitive cell is given by the parallelepiped from the above axes as


...
Wikipedia

...