A crystal oven is a temperature-controlled chamber used to maintain the quartz crystal in electronic crystal oscillators at a constant temperature, in order to prevent changes in the frequency due to variations in ambient temperature. An oscillator of this type is known as an oven-controlled crystal oscillator (OCXO, where "XO" is an old abbreviation for "crystal oscillator".) This type of oscillator achieves the highest frequency stability possible with a crystal. They are typically used to control the frequency of radio transmitters, cellular base stations, military communications equipment, and for precision frequency measurement.
Quartz crystals are widely used in electronic oscillators to precisely control the frequency produced. The frequency at which a quartz crystal resonator vibrates depends on its physical dimensions. A change in temperature causes the quartz to expand or contract due to thermal expansion, changing the frequency of the signal produced by the oscillator. Although quartz has a very low coefficient of thermal expansion, temperature changes are still the major cause of frequency variation in crystal oscillators.
The oven is a thermally-insulated enclosure containing the crystal and one or more electrical heating elements. Since other electronic components in the circuit are also vulnerable to temperature drift, usually the entire oscillator circuit is enclosed in the oven. A thermistor temperature sensor in a closed-loop control circuit is used to control the power to the heater and ensure that the oven is maintained at the precise temperature desired. Because the oven operates above ambient temperature, the oscillator usually requires a warm-up period after power has been applied. During this warm-up period, the frequency will not have the full rated stability.