*** Welcome to piglix ***

Cryptanalytic


Cryptanalysis (from the Greek kryptós, "hidden", and analýein, "to loosen" or "to untie") is the study of analyzing information systems in order to study the hidden aspects of the systems. Cryptanalysis is used to breach cryptographic security systems and gain access to the contents of encrypted messages, even if the cryptographic key is unknown.

In addition to mathematical analysis of cryptographic algorithms, cryptanalysis includes the study of side-channel attacks that do not target weaknesses in the cryptographic algorithms themselves, but instead exploit weaknesses in their implementation.

Even though the goal has been the same, the methods and techniques of cryptanalysis have changed drastically through the history of cryptography, adapting to increasing cryptographic complexity, ranging from the pen-and-paper methods of the past, through machines like the British Bombes and Colossus computers at Bletchley Park in World War II, to the mathematically advanced computerized schemes of the present. Methods for breaking modern cryptosystems often involve solving carefully constructed problems in pure mathematics, the best-known being integer factorization.

Given some encrypted data ("ciphertext"), the goal of the cryptanalyst is to gain as much information as possible about the original, unencrypted data ("plaintext"). It is useful to consider two aspects of achieving this. The first is breaking the system — that is discovering how the encipherment process works. The second is solving the key that is unique for a particular encripted message or group of messages.

Attacks can be classified based on what type of information the attacker has available. As a basic starting point it is normally assumed that, for the purposes of analysis, the general algorithm is known; this is Shannon's Maxim "the enemy knows the system" — in its turn, equivalent to Kerckhoffs' principle. This is a reasonable assumption in practice — throughout history, there are countless examples of secret algorithms falling into wider knowledge, variously through espionage, betrayal and reverse engineering. (And on occasion, ciphers have been broken through pure deduction; for example, the German Lorenz cipher and the Japanese Purple code, and a variety of classical schemes):


...
Wikipedia

...