A compression fossil is a fossil preserved in sedimentary rock that has undergone physical compression. While it is uncommon to find animals preserved as good compression fossils, it is very common to find plants preserved this way. The reason for this is that physical compression of the rock often leads to distortion of the fossil.
The best fossils of leaves are found preserved in fine layers of sediment that have been compressed in a direction perpendicular to the plane of the deposited sediment. Since leaves are basically flat, the resulting distortion is minimal. Plant stems and other three-dimensional plant structures do not preserve as well under compression. Typically, only the basic outline and surface features are preserved in compression fossils; internal anatomy is not preserved. These fossils may be studied while still partially entombed in the sedimentary rock matrix where they are preserved, or once lifted out of the matrix by a peel or transfer technique.
Compression fossils are formed most commonly in environments where fine sediment is deposited, such as in river deltas, lagoons, along rivers, and in ponds. The best rocks in which to find these fossils preserved are clay and shale, although volcanic ash may sometimes preserve plant fossils as well.
A slab and counter slab, more often called a part and counterpart in paleoentomology and paleobotany, are the matching halves of a compression fossil, a fossil-bearing matrix formed in sedimentary deposits. When excavated the matrix may be split along the natural grain or cleavage of the rock. A fossil embedded in the sediment may then also split down the middle, with fossil remains sticking to both surfaces, or the counter slab may simply show a negative impression or mould of the fossil. Comparing slab and counter slab has led to the exposure of a number of fossil forgeries.