*** Welcome to piglix ***

Cosmogenic isotope


Cosmogenic nuclides (or cosmogenic isotopes) are rare isotopes created when a high-energy cosmic ray interacts with the nucleus of an in situ Solar System atom, causing nucleons (protons and neutrons) to be expelled from the atom (see cosmic ray spallation). These isotopes are produced within Earth materials such as rocks or soil, in Earth's atmosphere, and in extraterrestrial items such as meteorites. By measuring cosmogenic isotopes, scientists are able to gain insight into a range of geological and astronomical processes. There are both radioactive and stable cosmogenic isotopes. Some of these radioisotopes are tritium, carbon-14 and phosphorus-32.

Certain light (low atomic number) primordial nuclides (some isotopes of lithium, beryllium and boron) are thought to have arisen not only during the Big Bang, and also (and perhaps primarily) to have been made after the Big Bang, but before the condensation of the Solar System, by the process of cosmic ray spallation on interstellar gas and dust. This explains their higher abundance in cosmic rays as compared with their ratios and abundances of certain other nuclides on Earth. This also explains the overabundance of the early transition metals just before iron in the periodic table; the cosmic-ray spallation of iron thus produces Sc–Cr on one hand and He–B on the other. However, the arbitrary defining qualification for cosmogenic nuclides of being formed "in situ in the Solar System" (meaning inside an already-aggregated piece of the Solar System) prevents primordial nuclides formed by cosmic ray spallation before the formation of the Solar System, from being termed "cosmogenic nuclides"— even though the mechanism for their formation is exactly the same. These same nuclides still arrive on Earth in small amounts in cosmic rays, and are formed in meteoroids, in the atmosphere, on Earth, "cosmogenically." However, beryllium (all of it stable beryllium-9) is present primordially in the Solar System in much larger amounts, having existed prior to the condensation of the Solar System, and thus present in the materials from which the Solar System formed.


...
Wikipedia

...