The accelerating expansion of the universe is the observation that the universe appears to be expanding at an increasing rate, so that the velocity at which a distant galaxy is receding from the observer is continuously increasing with time.
The accelerated expansion was discovered in 1998, by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which both used distant type Ia supernovae to measure the acceleration. The idea was that these type 1a supernovae all have almost the same intrinsic brightness (a standard candle). Since objects that are further away appear dimmer, we can use the observed brightness of these supernovae to measure the distance to them. The distance can then be compared to the supernovae's Doppler redshift, which measures how fast the supernovae are receding from us. The unexpected result was that the universe seems to be expanding at an accelerating rate. Cosmologists at the time expected that the expansion would be decelerating due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations and in analyses of the clustering of galaxies.
The expansion of the universe is thought to have been accelerating since the universe entered its dark-energy-dominated era roughly 5 billion years ago. Within the framework of general relativity, an accelerating expansion can be accounted for by a positive value of the cosmological constant Λ, equivalent to the presence of a positive vacuum energy, dubbed "dark energy". While there are alternative possible explanations, the description assuming dark energy (positive Λ) is used in the current standard model of cosmology, which also includes cold dark matter (CDM) and is known as the Lambda-CDM model.