*** Welcome to piglix ***

Contrast sensitivity


Contrast is the difference in luminance or colour that makes an object (or its representation in an image or display) distinguishable. In visual perception of the real world, contrast is determined by the difference in the color and brightness of the object and other objects within the same field of view. The human visual system is more sensitive to contrast than absolute luminance, we can perceive the world similarly regardless of the huge changes in illumination over the day or from place to place. The maximum contrast of an image is the contrast ratio or dynamic range.

The human contrast sensitivity function shows a typical band-pass filter shape peaking at around 4 cycles per degree with sensitivity dropping off either side of the peak. This tells us that the human visual system is most sensitive in detecting contrast differences occurring at 4 cycles per degree; i.e., at this spatial frequency humans can detect lower contrast differences than at any other angular frequency.

The high-frequency cut-off represents the optical limitations of the visual system's ability to resolve detail and is typically about 60 cycles per degree. The high-frequency cut-off is related to the packing density of the retinal photoreceptor cells: a finer matrix can resolve finer gratings.

The low frequency drop-off is due to lateral inhibition within the retinal ganglion cells. A typical retinal ganglion cell presents a centre region with either excitation or inhibition and a surround region with the opposite sign. By using coarse gratings, the bright bands fall on the inhibitory as well as the excitatory region of the ganglion cell resulting in lateral inhibition and account for the low-frequency drop-off of the human contrast sensitivity function.


...
Wikipedia

...