Dynamic range, abbreviated DR, DNR, or DYR is the ratio between the largest and smallest values that a certain quantity can assume. It is often used in the context of signals, like sound and light. It is measured either as a ratio or as a base-10 (decibel) or base-2 (doublings, bits or stops) logarithmic value of the difference between the smallest and largest signal values, in parallel to the common usage for audio signals.
The human senses of sight and hearing have a very high dynamic range. A human is capable of hearing (and usefully discerning) anything from a quiet murmur in a soundproofed room to the sound of the loudest heavy metal concert. Such a difference can exceed 100 dB which represents a factor of 100,000 in amplitude and a factor 10,000,000,000 in power. A human can see objects in starlight (although colour differentiation is reduced at low light levels) or in bright sunlight, even though on a moonless night objects receive 1/1,000,000,000 of the illumination they would on a bright sunny day: that is a dynamic range of 90 dB.
A human cannot perform these feats of perception at both extremes of the scale at the same time. The eyes take time to adjust to different light levels, and the dynamic range of the human eye in a given scene is actually quite limited due to optical glare. The instantaneous dynamic range of human audio perception is similarly subject to masking so that, for example, a whisper cannot be heard in loud surroundings.
In practice, it is difficult to achieve the full dynamic range experienced by humans using electronic equipment. Electronically reproduced audio and video often uses some trickery to fit original material with a wide dynamic range into a narrower recorded dynamic range that can more easily be stored and reproduced; these techniques are called dynamic range compression. For example, a good quality LCD has a dynamic range of around 1000:1 (commercially the dynamic range is often called the "contrast ratio" meaning the full-on/full-off luminance ratio), and some of the latest CMOS image sensors now have measured dynamic ranges of about 23,000:1 (reported as 14.5 stops, or doublings, equivalent to binary bits). Paper reflectance can achieve a dynamic range of about 100:1. A professional ENG camcorder such as the Sony Digital Betacam achieves a dynamic range of greater than 90 dB in audio recording.