*** Welcome to piglix ***

Contour integral


In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

Contour integration is closely related to the calculus of residues, a method of complex analysis.

One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods.

Contour integration methods include

One method can be used, or a combination of these methods, or various limiting processes, for the purpose of finding these integrals or sums.

In complex analysis a contour is a type of curve in the complex plane. In contour integration, contours provide a precise definition of the curves on which an integral may be suitably defined. A curve in the complex plane is defined as a continuous function from a closed interval of the real line to the complex plane: z : [a, b] → C.

This definition of a curve coincides with the intuitive notion of a curve, but includes a parametrization by a continuous function from a closed interval. This more precise definition allows us to consider what properties a curve must have for it to be useful for integration. In the following subsections we narrow down the set of curves that we can integrate to only include ones that can be built up out of a finite number of continuous curves that can be given a direction. Moreover, we will restrict the "pieces" from crossing over themselves, and we require that each piece have a finite (non-vanishing) continuous derivative. These requirements correspond to requiring that we consider only curves that can be traced, such as by a pen, in a sequence of even, steady strokes, which only stop to start a new piece of the curve, all without picking up the pen.

Contours are often defined in terms of directed smooth curves. These provide a precise definition of a "piece" of a smooth curve, of which a contour is made.

A smooth curve is a curve z : [a, b] → C with a non-vanishing, continuous derivative such that each point is traversed only once (z is one-to-one), with the possible exception of a curve such that the endpoints match (z(a) = z(b)). In the case where the endpoints match the curve is called closed, and the function is required to be one-to-one everywhere else and the derivative must be continuous at the identified point (z′(a) = z′(b)). A smooth curve that is not closed is often referred to as a smooth arc.


...
Wikipedia

...