*** Welcome to piglix ***

Residue theorem


In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. From a geometrical perspective, it is a special case of the generalized Stokes' theorem.

The statement is as follows:

Let U be a simply connected open subset of the complex plane containing a finite list of points a1, ..., an, and f a function defined and holomorphic on U \ {a1,...,an}. Let γ be a closed rectifiable curve in U which does not meet any of the ak, and denote the winding number of γ around ak by I(γ, ak). The line integral of f around γ is equal to i times the sum of residues of f at the points, each counted as many times as γ winds around the point:

If γ is a positively oriented simple closed curve, I(γ, ak) = 1 if ak is in the interior of γ, and 0 if not, so


...
Wikipedia

...