*** Welcome to piglix ***

Condensing boiler


Condensing boilers are water heaters fueled by gas or oil. They achieve high efficiency (typically greater than 90% on the higher heating value) by condensing water vapour in the exhaust gases and so recovering its latent heat of vaporisation, which would otherwise have been wasted. This condensed vapour leaves the system in liquid form, via a drain. In many countries, the use of condensing boilers is compulsory or encouraged with financial incentives.

In a conventional boiler, fuel is burned and the hot gases produced pass through a heat exchanger where much of their heat is transferred to water, thus raising the water's temperature.

One of the hot gases produced in the combustion process is water vapour (steam), which arises from burning the hydrogen content of the fuel. A condensing boiler extracts additional heat from the waste gases by condensing this water vapour to liquid water, thus recovering its latent heat of vaporization. A typical increase of efficiency can be as much as 10-12%. While the effectiveness of the condensing process varies depending on the temperature of the water returning to the boiler, it is always at least as efficient as a non-condensing boiler.

The condensate produced is slightly acidic (3-5 pH), so suitable materials must be used in areas where liquid is present. Aluminium alloys and stainless steel are most commonly used at high temperatures. In low temperature areas, plastics are most cost effective (e.g., uPVC and polypropylene). The production of condensate also requires the installation of a heat exchanger condensate drainage system. In a typical installation, this is the only difference between a condensing and non-condensing boiler.

To economically manufacture a condensing boiler's heat exchanger (and for the appliance to be manageable at installation), the smallest practical size for its output is preferred. This approach has resulted in heat exchangers with high combustion side resistance, often requiring the use of a combustion fan to move the products through narrow passageways. This has also had the benefit of providing the energy for the flue system as the expelled combustion gases are usually below 100°C (212°F) and as such, have a density close to air, with little buoyancy. The combustion fan helps to pump exhaust gas to the outside.

Condensing boilers are now largely replacing earlier, conventional designs in powering domestic central heating systems in Europe and, to a lesser degree, in North America. The Netherlands was the first country to adopt them broadly. In Europe, their installation is strongly advocated by pressure groups and government bodies concerned with reducing energy use. In the United Kingdom, for example, all new gas central-heating boilers fitted in England and Wales since 2005 must be high-efficiency condensing boilers unless there are exceptional circumstances; the same regulations apply to oil-fired boilers from April 2007 (warm air central heating systems are exempt from these regulations). In the United States, there is a Federal tax credit for the installation of condensing boilers and additional rebates from power companies in some states. In Western Canada, energy suppliers now offer energy rebates when these systems are installed in multi-unit dwellings. The decrease in natural gas prices in North America has resulted in increased retrofitting of existing boiler installations with condensing equipment.


...
Wikipedia

...