*** Welcome to piglix ***

Concentricity


In geometry, two or more objects are said to be concentric, coaxal, or coaxial when they share the same center or axis. Circles,regular polygons and regular polyhedra, and spheres may be concentric to one another (sharing the same center point), as may cylinders (sharing the same central axis).

In the Euclidean plane, two circles that are concentric necessarily have different radii from each other. However, circles in three-dimensional space may be concentric, and have the same radius as each other, but nevertheless be different circles. For example, two different meridians of a terrestrial globe are concentric with each other and with the globe of the earth (approximated as a sphere). More generally, every two great circles on a sphere are concentric with each other and with the sphere.

By Euler's theorem in geometry on the distance between the circumcenter and incenter of a triangle, two concentric circles (with that distance being zero) are the circumcircle and incircle of a triangle if and only if the radius of one is twice the radius of the other, in which case the triangle is equilateral.

The circumcircle and the incircle of a regular n-gon, and the regular n-gon itself, are concentric. For the circumradius-to-inradius ratio for various n, see Bicentric polygon#Regular polygons.


...
Wikipedia

...