*** Welcome to piglix ***

Circumcenter


In geometry, the circumscribed circle or circumcircle of a polygon is a circle which passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.

A polygon which has a circumscribed circle is called a cyclic polygon (sometimes a concyclic polygon, because the vertices are concyclic). All regular simple polygons, all isosceles trapezoids, all triangles and all rectangles are cyclic.

A related notion is the one of a minimum bounding circle, which is the smallest circle that completely contains the polygon within it. Not every polygon has a circumscribed circle, as the vertices of a polygon do not need to all lie on a circle, but every polygon has a unique minimum bounding circle, which may be constructed by a linear time algorithm. Even if a polygon has a circumscribed circle, it may not coincide with its minimum bounding circle; for example, for an obtuse triangle, the minimum bounding circle has the longest side as diameter and does not pass through the opposite vertex.

All triangles are cyclic; i.e., every triangle has a circumscribed circle.

This can be proven on the grounds that the general equation for a circle with center (a, b) and radius r in the Cartesian coordinate system is

Since this equation has three parameters (a, b, r) only three points' coordinate pairs are required to determine the equation of a circle. Since a triangle is defined by its three vertices, and exactly three points are required to determine a circle, every triangle can be circumscribed.

The circumcenter of a triangle can be constructed by drawing any two of the three perpendicular bisectors. The center is the point where the perpendicular bisectors intersect, and the radius is the length to any of the three vertices.


...
Wikipedia

...