*** Welcome to piglix ***

Completely reducible


In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial sub-objects. The precise definitions of these words depends on the context.

For example, if G is a finite group, then a nontrivial finite-dimensional representation V over a field is said to be simple if the only subrepresentations it contains are either {0} or V (these are also called irreducible representations). Then Maschke's theorem says that any finite-dimensional representation is a direct sum of simple representations (provided the characteristic does not divide the order of the group). So, in this case, every representation of a finite group is semi-simple. Especially in algebra and representation theory, "semi-simplicity" is also called complete reducibility. For example, Weyl's theorem on complete reducibility says a finite-dimensional representation of a semisimple compact Lie group is semisimple.

A square matrix (in other words a linear operator with V finite dimensional vector space) is said to be simple if its only invariant subspaces under T are {0} and V. If the field is algebraically closed (such as the complex numbers), then the only simple matrices are of size 1 by 1. A semi-simple matrix is one that is similar to a direct sum of simple matrices; if the field is algebraically closed, this is the same as being diagonalizable.


...
Wikipedia

...